
Surface-directed spinodal decomposition: modelling and numerical simulations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 2109

(http://iopscience.iop.org/0953-8984/9/10/003)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 23:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 2109–2133. Printed in the UK PII: S0953-8984(97)67977-1

REVIEW ARTICLE

Surface-directed spinodal decomposition: modelling and
numerical simulations

Sanjay Puri†‡ and Harry L Frisch‡§
† School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
‡ Institut fur Physik, Johannes Gutenberg-Universitat Mainz, D-55099 Mainz, Germany
§ Department of Chemistry, State University of New York at Albany, 1400 Washington Avenue,
Albany, NY 12222, USA

Received 19 November 1996

Abstract. We critically review the modelling and simulations of surface-directed spinodal
decomposition, namely, the dynamics of phase separation of a critical or near-critical binary
mixture in the presence of a surface with a preferential attraction for one of the components of
the mixture.

1. Introduction

Multicomponent mixtures are of considerable technological and scientific relevance and
there have been many studies focusing on the thermodynamic properties of mixtures. More
recently, attention has turned to problems of phase-ordering dynamics, i.e., the temporal
evolution of a homogeneous two-phase mixture which has been rendered thermodynamically
unstable by a rapid pressure or temperature quench [1]. Typically, the unstable mixture
(say, AB) decomposes into A- and B-rich domains which coarsen with time. For pure and
isotropic systems, the coarsening domains are characterized by a unique time-dependent
length scaleL(t), wheret is the time. An important consequence of the existence of this
unique length scale is the dynamical scaling of the order parameter correlation function
g(r, t) = 〈φ(R, t)φ(R+ r, t)〉, whereφ(R, t) is the order parameter at pointR and time
t , and the angular brackets denote an averaging over independent initial conditions. The
dynamical scaling property states thatg(r, t) only depends on timet through a scale factor
for the distance variable [2], i.e.,

g(r, t) = G(r/L(t)) (1)

whereG(x) is a time-independent master function. In more physical terms, dynamical
scaling of the correlation function implies that the coarsening domain morphology is self-
similar in time.

The primary interest of most studies in phase-ordering dynamics has been to elucidate
the nature of the asymptotic domain growth law and the functional form of the correlation
function G(x) or its momentum-space counterpart. For pure and isotropic systems
characterized by a scalar order parameter, there is now a good understanding of these
properties—at least experimentally and numerically [1]. Thus, it is well established that the
asymptotic length scale exhibits a power-law behaviourL(t) ∼ tφ , whereφ is referred to as
the growth exponent. The value of this exponent depends critically on whether or not the
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Figure 1. The volume fraction of d-PEP as a function of depth for surface-directed spinodal
decomposition in critical polymer mixtures of PEP and d-PEP [6]. These profiles were obtained
by a lateral averaging (parallel to the surface) of spinodal decomposition waves, which are
randomly oriented in the bulk but not near the surface. The surface has a preferential
attraction for d-PEP and is located at zero depth. Order parameter profiles are shown for
times corresponding to: (a) 19 200 s; (b) 64 440 s; and (c) 172 800 s. (From reference [6].)
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evolution is characterized by a conserved order parameter. Thus,φ = 1/2 for the case of a
ferromagnet undergoing an ordering transition, where the order parameter (i.e., spontaneous
magnetization) is not conserved. Furthermore,φ = 1/3 for the case of a phase-separating
binary mixture AB in the absence of hydrodynamic effects. In this case, the order parameter
(i.e., the local difference in densities of A and B) is conserved. The above growth laws
are usually referred to as the Lifshitz–Cahn–Allen (LCA) and Lifshitz–Slyozov (LS) laws,
respectively. The case of a phase-separating binary fluid is more involved because of the
coupling of the conserved order parameter (i.e., the density field) to the hydrodynamic
velocity field, which plays an important role in the late stages of phase separation [3]. The
growth exponent for segregating binary fluids depends on the dimensionality and also the
particular regime of interest [4].

Recent attention in the area of phase-ordering dynamics has turned to experimentally
realistic systems and the incorporation of experimentally relevant effects into traditional
idealized models. The present article reviews theoretical and numerical developments for a
particularly interesting problem in this class, i.e., the behaviour of phase-separating binary
mixtures in the presence of a surface which has a preferential attraction for one of the
components of the mixture. Theoretical interest in this problem has been motivated by a
number of beautiful experiments, many of which have been recently reviewed by Krausch
[5]. We will primarily focus on homogeneous binary mixtures which have been quenched
into a region of the phase diagram where they are unstable and undergo spontaneous phase
separation or spinodal decomposition in the bulk. Of course, the situation in which the
binary mixture has a highly off-critical composition and separates via nucleation and growth
is also of great experimental and theoretical interest. However, this situation has received
considerably less attention so far and we will not focus on it here.

This paper is organized in the following fashion. In section 2, we provide a brief
overview of some experiments which have motivated theoretical interest in surface-directed
spinodal decomposition. Section 3 critically examines various models of this phenomenon
and the numerical results obtained from these models. Section 4 concludes this paper with
a summary and discussion.

2. A brief overview of the experimental results

In this paper, we present only a brief overview of some relevant experiments in the study of
surface-directed spinodal decomposition. As we have remarked earlier, an extensive review
of the extant experimental situation has already been provided by Krausch [5] and we refer
the interested reader to that paper.

To the best of our knowledge, the first relevant experimental study of this problem
is due to Joneset al [6], who studied the spinodal decomposition of critical mixtures
of poly(ethylenepropylene) (PEP) and perdeuterated poly(ethylenepropylene) (d-PEP) in
the presence of a surface with a preferential attraction for d-PEP. (Their experiment was
motivated by the theoretical work of Ball and Essery [7], which we will discuss in the next
section.) Joneset al observed that the surface became the origin of composition waves with
wave-vectors normal to the surface and propagating into the bulk, as depicted in figure 1.
They referred to these waves as ‘surface-directed spinodal decomposition waves’. Apart
from these qualitative observations, the initial experiments of Joneset al [6] were unable
to make clear quantitative statements about the temporal evolution of these waves and
associated domain growth phenomena.

Krauschet al [8] improved on these first experiments, using a similar experimental
system but with better techniques. Their results indicated that the surface-directed spinodal
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(a)

(b)

Figure 2. (a) Typical volume fraction profiles for d-PEP and PEP as a function of depth in
critical polymer mixtures of PEP and d-PEP phase separating near a surface with a preference
for d-PEP. These experimental results were obtained by Krauschet al [8] and correspond to
a time of 14 400 s after the quench. To compare these profiles with those of Joneset al [6]
in figure 1, the ‘pre-surface’ region up to about 20 nm should be discarded. (From reference
[8].) (b) The time dependence of the first zero of the volume fraction profiles shown in figure
2(a). The first zero (denoted asl(t) here) is plotted versust1/3 (t being the time) for two
different quench depths. The dashed lines correspond to linear best fits. These experiments
correspond to the limit of weak surface field and high thermal noise and the corresponding
domain morphology is partially wet, with domains of both phases being in contact with the
surface. (From reference [8].)

decomposition waves penetrated into the bulk in a power-law fashion; and the first zero
crossing,R1(t), of these profiles obeyed the LS growth lawR1(t) ∼ t1/3 (see figure 2). Their
experiments were also motivated, in part, by the numerical studies of Brown and Chakrabarti
[9] and Marko [10], which we will summarize in the next section. However, we would like
to stress that the experimental situation of Krauschet al in reference [8] corresponds to a
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situation in which the surface field is weak compared to thermal noise, so the surface is
only partially wetted by droplets of the preferred phase. A similar situation was also studied
by Straubet al [11] using critical polymer mixtures of deuterated polystyrene (dPS) and
partially brominated polystyrene (PBrxS). These authors found that that the preferred phase
initially formed a plated layer at the surface, which grew out for a while before decomposing
into a partially wet morphology with domains of both phases in contact with the surface.
The layer thickness (defined from the first zero of the laterally averaged profiles) again
obeyed the LS growth lawR1(t) ∼ t1/3.

One can also consider the opposite limit of a strong surface field and weak or no noise.
In this situation, a multilayered structure rapidly forms at the surface. This structure consists
of alternating layers of the preferred and non-preferred phases. The thickness of the layer
of preferred phase at the surface grows at a rate which is determined by the nature of the
forces exerted by the surface on the decomposing mixture. The strength of the surface
field determines whether or not this layer wets the surface. We will elaborate further on
this situation in the next section. Experimental realizations of this limit were studied by
Krauschet al [12], who mimicked the low-noise situation by creating a multilayer of the
coexisting phases of a binary polymer mixture (namely, dPS and PBrxS) in contact with
an unstable bulk. For early and intermediate times, they found that coarsening near the
surface occurred by the dissolution of alternating layers of their initial structure. At late
times, they again found results similar to those reported in reference [8]. It is not clear to
us what the rather specialized experimental situation of Krauschet al [12] can say about
general behaviour in the limiting case of strong field and weak noise.

A more recent experiment by Geogheganet al [13] may be more relevant to this case.
These authors studied surface-directed spinodal decomposition in blends of dPS and poly(α-
methylstyrene) (PαMS). They report considerably slower growth of the surface layer than
that seen in references [8] and [11] and it is possible that their experiment constitutes another
realization of the low-noise limit.

As far as domain growth in the direction parallel to the surface is concerned, there have
been a number of apparently conflicting observations. Again, it is appropriate to distinguish
between two different physical situations. For example, in the case where domains of both
phases are in contact with the surface, it is reasonable to examine the lateral domain growth
at the surface itself. On the other hand, when the surface is completely covered by a
thickening layer of the preferred phase, it is reasonable to consider lateral domain growth in
the regions outside the systematic multilayered structure. (Of course, one can also consider
the dynamics of fluctuations around the background value corresponding to the systematic
profile at the surface.) The experiment of Straubet al [11] found that the lateral size of
surface domains formed in the late stages of surface-directed spinodal decomposition in the
low-field–high-noise limit obeys the LS growth law.

These results should be contrasted with the work of Wiltzius, Cumming and co-
workers [14], who reported observations of a ‘fast mode’ of surface domain growth in
their experiments on surface-directed spinodal decomposition in both polymer and binary
fluid mixtures. They observed that the structure factor of the coarsening system exhibited
two peaks rather than the single peak usually seen in bulk spinodal decomposition. The
inverse position of the second peak (at larger wave-vectors) obeyed the appropriate bulk
growth law (i.e.,L(t) ∼ t or L(t) ∼ t1/3, depending on whether or not hydrodynamics
is relevant), whereas the position of the first peak (at smaller wave-vectors) exhibited an
anomalously fast growth lawL(t) ∼ tφ , with φ ∼ 1.1–1.5. Wiltziuset al interpreted this
fast growth as an early-time regime in which a partially wet morphology evolves to one
where the surface is completely covered by a continuous layer, which presumably grows
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into the bulk at later times.
In our perception, the results of reference [14] should not be interpreted as being at

variance with the results of Straubet al [11] because they correspond to different time
regimes and physical situations. After all, the asymptotic state in the experiments of
reference [11] corresponds to a partially wet surface with domains of both phases in contact
with the wall—in contrast with the experiments of reference [14], where the fast mode
precedes the formation of a continuous layer at the wall. Troian [15] has argued that
this fast mode is the consequence of coalescence of domains of the non-wetting phase in
contact with a continuous layer of the wetting phase of the surface. However, there are
some ambiguities in her treatment. We are inclined to agree with Keblinskiet al [16]
that the extremely rapid formation of the wetting layer at the surface could be interpreted
as corresponding to the fast mode reported in the experiments of Wiltzius, Cumming and
co-workers [14].

Prior to the experiments of reference [14], Guenounet al [17] had also studied
the interplay of wetting and phase separation in binary fluid mixtures (cyclohexane and
methanol) at critical concentrations. The time regime investigated by them corresponds
to a situation in which the surface is already coated with a layer of the preferred phase.
Guenounet al [17] reported that domain growth perpendicular to the surface obeyed an
asymptotic law consistent with that for the bulk, namely,L(t) ∼ t . However, in contrast
to the experiments of Wiltziuset al [14], they found that domain growth parallel to the
surface was suppressed and, if a power-law fit were attempted, showed a growth exponent
φ ∼ 0.5–0.7.

Tanaka [18] has also conducted experiments on binary polymer mixtures phase
separating in one- or two-dimensional capillaries. Most of his experiments were conducted
on mixtures of poly(vinylmethylether) (PVME) with water; or oligomer mixtures. Tanaka’s
primary focus was the interaction between phase separation and the wetting layer growing
from the surface. In particular, he focused on the late stages of phase separation,
where hydrodynamic effects dominate the segregation dynamics. Tanaka found a strong
dependence of the evolution morphology on the composition of the mixture. As our primary
interest is in the regime where hydrodynamic effects are not relevant, we do not present
further details of Tanaka’s work here but rather refer the interested reader to his original
papers [18].

These representative experiments provide guidance to the relevant theoretical questions,
which we would like to describe in the next section. Of course, development in this
area has resulted from a symbiotic interaction between experiments, theory and numerical
simulations. However, it is appropriate to summarize here the experimentally relevant
features which must be manifested by any reasonable theoretical model for surface-directed
spinodal decomposition. Modelling and simulations to date have so far been restricted to
the case where hydrodynamic effects are not relevant. Therefore, we will only summarize
experimental results for this situation. (In any case, there does not appear to be experimental
unanimity on the behaviour of surface-directed spinodal decomposition in binary fluids.) It is
experimentally clear that the attracting surface is rapidly enriched in the preferred component
and becomes the source of anisotropic spinodal decomposition waves which propagate into
the bulk perpendicular to the surface. The morphology of these waves and their temporal
evolution depends critically on the relative strengths of the surface field and thermal noise,
and on whether the surface field strength leads to a partial or complete wetting of the surface.
However, domain growth parallel to the surface obeys the same asymptotic growth law as
that in the bulk, except that there may be an enhanced domain growth near the surface due
to the orientational effect of (partial or complete) wetting layers formed at the surface.
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3. Theoretical modelling and numerical simulations

3.1. Early studies of surface-directed spinodal decomposition

One of the earliest analytical investigations of the effect of surfaces on spinodal
decomposition is due to Xiong and Gong [19], who considered a semi-infinite Ising model
characterized by a conserved scalar order parameter. In their model, the dynamics of the
order parameter in the bulk obeys the usual Cahn–Hilliard–Cook (CHC) equation

∂φ(R, Z, τ)

∂τ
= −∇2

[
φ(R, Z, τ)− φ(R, Z, τ)3+ 1

2
∇2φ(R, Z, τ)

]
+ η(R, Z, τ) (2)

where φ(R, Z, τ) is the order parameter at space point(R, Z) and time τ , with
R representing coordinates parallel to the surface andZ representing the coordinate
perpendicular to the surface. (For consistency, we have already rescaled the CHC equation
into the dimensionless form we will use throughout this paper.) In equation (2),η(R, Z, τ)
is a Gaussian white noise which obeys the appropriate fluctuation-dissipation theorem and
it is assumed that the surface gives rise to a delta-function field, which does not penetrate
into the bulk of the system. Xiong and Gong supplemented the bulk CHC equation with a
boundary condition at the surface positionZ = 0:

∂φ(R, Z, τ)

∂Z

∣∣∣∣
Z=0

= Cφ(R, 0, τ ) (3)

whereC measures the strength of the delta-function field originating at the surface. Xiong
and Gong used this model as the basis of an approximate theory for the time-dependent
structure factor in the surface layer, following the treatment of Langeret al [20]. Their
results indicated that phase separation in the boundary layer is faster than that in the bulk
but they did not quantify the nature of domain growth near the surface. Unfortunately, the
modelling of Xiong and Gong is open to criticism on two counts in the present context.
Firstly, their model is incomplete without a second boundary condition at the surface, which
would normally be of the ‘no-flux’ type, i.e.,

∂

∂Z

[
φ(R, Z, τ)− φ(R, Z, τ)3+ 1

2
∇2φ(R, Z, τ)

]∣∣∣∣
Z=0

= 0 (4)

in conjunction with a corresponding condition on the thermal noise. Furthermore, the
form of the surface free energy used by Xiong and Gong does not result in a preferential
attraction of either of the components to the surface and is inappropriate in the context of
surface-directed spinodal decomposition.

Jiang and Ebner [21] studied the effect of surfaces on phase separation through Monte
Carlo (MC) simulations of a semi-infinite Ising model with Kawasaki spin-exchange kinetics.
In their modelling, the surface preferentially attracted one of the components of a binary
mixture. Jiang and Ebner studied cases with both short-ranged (delta-function) and long-
ranged (power-law) surface potentials. They found that the thickness of the surface layer in
their simulations always obeyed the LS growth law, regardless of the nature of the potential.
However, their results for surface layer thickness exhibit a large degree of scatter and it is
difficult to conclusively ascertain an asymptotic growth exponent from their data.

The next relevant study is due to Ball and Essery [7], who modelled surface-affected
spinodal decomposition using equations (2)–(4). As we have remarked earlier, the boundary
condition in equation (3) does not lead to surface-directed spinodal decomposition for
critical quenches because the corresponding free energy does not discriminate between
the two phases. For off-critical quenches, this model does exhibit symmetry breaking but
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in a somewhat artificial fashion. Nevertheless, the pioneering work of Ball and Essery
provided guidance to the initial experiments of Joneset al [6] on surface-directed spinodal
decomposition. Furthermore, the initial study of Ball and Essery already recognised the
important distinction between the multilayered morphology (arising in the high-field–low-
noise case) and the partially wet morphology, in which domains of both phases were in
contact with the wall (arising in the low-field–high-noise case).

In passing, we should also remark that Ball and Essery not only attempted to model
the role of the boundary for the system (through appropriate boundary conditions), but also
effects due to temperature gradients. This was done by directly coupling the temperature-
dependent parameter implicit in the linear term of the CHC equation with a diffusion
equation for the temperature field. Their description of this problem is also somewhat
incomplete as there are additional terms coupling temperature and order parameter gradients
which are missing in their model.

Figure 3. A schematic diagram of a binary alloy AB in contact with a surface located at layer
n = 0 (or coordinatez = 0). We assume that there are only nearest-neighbour interactions and
the different possible interactions are depicted on the figure. The energies associated with A–A
(heavy line), B–B (light solid line), and A–B (dashed line) in the bulk areφAA, φBB andφAB ,
respectively. Our model also includes the possibility of different interactions in the surface layer
(n = 1). Finally, we assume that the surface only interacts with the layern = 1 via interactions
νA andνB , though we can easily generalize to the case of long-ranged interactions [29]. (From
reference [25].)

3.2. The dynamics of phase separation in a semi-infinite Ising model

In this subsection, we review our recent work on the modelling and simulation of surface-
directed spinodal decomposition. As our primary interest was the interplay of wetting
and spinodal decomposition, we have focused on the limit of high surface field and weak
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thermal noise. Therefore, our numerical results are complementary to those of Brown and
Chakrabarti [9] and Marko [10], which we present in the next subsection.

The phase separation of a binary mixture (say, AB) in the bulk can be described
by an Ising-lattice model in which the constituents A and B may interchange directly
via Kawasaki spin-exchange kinetics [22]. This is not a mechanistically realistic
description of interdiffusion in solid alloys which usually depends on a vacancy-
mediated mechanism nor that in fluid mixtures where hydrodynamic effects are relevant.
Nevertheless, this microscopic model is a convenient starting point for motivating reasonable
phenomenological models for phase separation. Binder [23] formulated a master equation
approach to the kinetic Ising model which motivated the phenomenological Cahn–Hilliard
(CH) equation starting from an Ising model with Kawasaki spin-exchange kinetics. Binder
and Frisch [24] applied this approach to the semi-infinite Ising model with a delta-function
surface field and Kawasaki kinetics. In the mean-field limit, they were able to obtain
a coarse-grained model for surface-directed spinodal decomposition, which consisted of
the CH equation in the bulk supplemented by two boundary conditions representing the
surface. One of these boundary conditions was later modified by Puri and Binder [25],
who explicitly incorporated the no-flux boundary condition of equation (4) into the model.
Our discussion in this paper closely follows that of Puri and Binder. Ultimately, such a
coarse-grained model is of more general validity than the particular lattice model used for
its derivation and is expected to be applicable for every microscopic model in the same
‘dynamical universality class’ [26].

In our initial formulation, the surface forces were taken to be of delta-function form at
the surface, because we felt that the simpler theory involving short-range forces must be
understood first. The simple Ginzburg–Landau model with short-range surface forces has
the advantage that its static limit, though highly non-linear, can be solved exactly [27, 28],
allowing a detailed analysis of equilibrium wetting phenomena. In recent work [29], we have
also incorporated long-ranged forces into our modelling and simulations and will discuss
these briefly later.

3.2.1. The model Hamiltonian and formalism in the static case.The starting point of our
modelling is a binary (AB) mixture in contact with a surface and with pairwise interactions
φAA, φAB , φBB between atoms at sitesri andrj , as is schematically depicted in figure 3. In
terms of local concentration variables,ci = 1 if site i is occupied by an A atom andci = 0
if it is occupied by a B atom. If the total number of atoms isN , the variablei ranges from
1 toN . The corresponding Hamiltonian is

H =
∑
i 6=j

[cicjφAA(ri , rj )+ ci(1− cj )φAB(ri , rj )+ (1− ci)cjφAB(ri , rj )

+ (1− ci)(1− cj )φBB(ri , rj )] +
∑
i

[νA(ri )ci + νB(ri )(1− ci)] (5)

where sums over pairs run over all pairs once, and lattice sites exist in the positive half-
spacez > 0 only. In equation (5),νA(ri ) or νB(ri ) are forces exerted on A or B atoms
at siteri due to the hard wall atz = 0. In the case of a free surface (in contact with
vacuum or air) atz = 0, it would seem natural to setνA(ri ) = νB(ri ) = 0, but in this
case any intrinsic roughness of the interface between the mixture and the ‘vapour phase’
at z < 0 is disregarded. This treatment would hold for solids above their roughening
transition temperatureTR [30, 31] (and for fluid mixtures where the fluid–gas interface is
always rough, of course) only on length scales distinctly larger than the scale of atomic
roughness. A second effect due to the breaking of the translational symmetry of the surface
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is that, in general, one must expect that the pairwise interactionsφAA, φAB , φBB depend
not only on the relative distance(ri − rj ), but also onri , rj separately (e.g., different
interactions occur if both sitesi, j are in the layer adjacent to the surface [32, 33].

One is not interested here in the ‘correct’ description of atomistic detail, but rather
figure 3 and the Hamiltonian in equation (5) only serve as a generic model for deriving
a reasonable continuum description which holds for a much larger class of systems
[32, 34, 35]. We simplify the problem by restricting the range of all interactions to nearest
neighbours, and take all interactionsφAA, φAB, φBB to be independent of their sitesi, j
except if both sites are in the surface layern = 1. Finally, we assumeνA(ri ), νB(ri ) to be
non-zero only ifi is in the layern = 1. This latter assumption, however, means that one
restricts attention to wetting with short-range forces, and it is well known that this situation
differs in important qualitative respects from wetting with long-range forces [35], e.g., van
der Waals forces which decay asz−3, wherez is the distance from the surface. In recent
work, we have also considered the effect of long-ranged surface forces on the dynamics of
phase separation and will present some results for this case later.

It is convenient to translate our lattice-gas model into the Ising-spin representation via
the usual transformationci = (1− Si)/2 (Si = ±1), which yields

H− µA
∑
i

ci − µB
∑
i

(1− ci) = −
∑
〈i,j〉

JijSiSj −H
∑
i

Si −H1

∑
i∈1st layer

Si +H0 (6)

whereµA,µB are the chemical potentials of both species, andH0 is a constant which only
affects the energy scale. The pairwise ‘exchange’ interactionJij is

Jij = J = 1

2
φAB − 1

4
(φAA + φBB) (7)

when at least one of the sitesi, j is not in the surface layern = 1. If both sites are in the
layer n = 1,

Jij = Js = 1

2
φAB

s − 1

4
(φAA

s + φBBs) (8)

where the superscripts refers to the pairwise interaction potentials in the surface layer. The
bulk ‘magnetic field’H is (for sitesi not in then = 1 layer)

H = 1

2
(µB − µA)+ 1

2

∑
j (6=i)

(φAA − φBB) (9)

while for sitesi in the n = 1 layer one has an additional ‘surface field’H1,

H +H1 = 1

2
(µB − µA + νA − νB)

+ 1

2

[ ∑
j∈1st layer

j (6=i)
(φAA

s − φBBs)+
∑

j∈2nd layer

(φAA − φBB)
]
. (10)

A non-zero surface fieldH1 arises even for the case whereνA = νB = 0 and
interactions are unchanged near the surface, i.e.,φAA

s = φAA and φBBs = φBB , as long
asφAA − φBB 6= 0. This is a result of the ‘missing neighbours’ of sites in the first layer.
Considering the most symmetric case, whereφAA = φBB , clearly has little physical relevance
for actual mixtures. The ‘bulk field’ in equation (9) is easily eliminated from the problem
by fixing the average concentration

c̄ = 1

N

∑
i

〈ci〉 (11)
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which is also the concentrationcb in the bulk of this semi-infinite system. Thus, the
additional surface fieldH1 must remain as a parameter in the problem. As is well known
[32, 34, 35], this term is responsible for both surface enrichment and wetting phenomena
in mixtures.

Both surface critical phenomena [32, 34, 35] and wetting [35, 36] can be discussed
in terms of the singular behaviour of the surface excess free-energy densityfs(T ,H,H1),
whereT is the temperature. This quantity is conveniently defined on the basis of the free-
energy densityf (T ,H,H1) of a thin film of thicknessD with two equivalent surfaces as
follows:

f (T ,H,H1) = fb(T ,H)+ 2

D
fs(T ,H,H1) D→∞ (12)

wherefb(T ,H) is the bulk free-energy density of the system at temperatureT and bulk
field H . Particularly interesting physical quantities are the response functions, e.g., the
surface susceptibilityχs defined as

χs = −∂
2fs(T ,H,H1)

∂H 2

∣∣∣∣
T ,H1

=
∑
n

(χn − χb) =
∫ ∞

0
dz [χ(z)− χb] (13)

where the bulk susceptibility isχb = −∂2fb(T ,H)/∂H
2|T . The surface layer susceptibility

is defined as

χ1 = −∂
2fs(T ,H,H1)

∂H ∂H1

∣∣∣∣
T

= ∂m1

∂H

∣∣∣∣
T ,H1

= β
∑
j

(〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ) (14)

wherem1 = 〈Si〉T , with i being chosen from the first layer andβ = (kBT )−1. We can also
define a susceptibility with respect to the surface fieldH1 as

χ11 = −∂
2fs(T ,H,H1)

∂H 2
1

∣∣∣∣
T ,H

= ∂m1

∂H1

∣∣∣∣
T ,H

= β
∑

j∈1st layer

(〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ). (15)

The layer magnetizationmn and the layer susceptibilitiesχn, χnn are obvious generalizations
to the case when a fieldHn acts on spins in thenth layer:

χn = ∂mn

∂H

∣∣∣∣
T ,Hn

= β
∑
j

(〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ) i ∈ n (16)

and

χnn = ∂mn

∂Hn

∣∣∣∣
T ,H

= β
∑
j∈n
(〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ) i ∈ n. (17)

Of course, equations (16) and (17) are related to the long-wavelength limits of the
corresponding structure factors (k‖ is a wave-vector lying in a plane parallel to the surface):

Sn(k) =
∑
j

exp[ik · (rj − ri )](〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ) i ∈ n (18)

and

Snn(k‖) =
∑
j∈n

exp[ik‖ · (rj − ri )](〈SiSj 〉T − 〈Si〉T 〈Sj 〉T ) i ∈ n. (19)

In analogy with equation (12), it is reasonable to consider the surface excessSs(k) of
the total scattering intensityS(k) of a film,

S(k) = Sb(k)+ 2

D
Ss(k) D→∞ (20)
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where

Ss(k) =
∑
n

[Sn(k)− Sb(k)] =
∫ ∞

0
dz [S(k, z)− Sb(k)]. (21)

In static equilibrium, the small-k behaviour of the structure factors defined via equations
(18)–(21) characterizes the typical length scales of the problem: for surface critical
phenomena, it is simply the correlation lengthξb which controls these length scales for
both the ordinary and special surface transition [32, 34]. However, for critical wetting,
separate correlation lengthsξ‖, ξ⊥ in directions parallel and perpendicular to the surface
need to be distinguished [35].

3.2.2. The coarse-grained equivalent of the semi-infinite Ising model with Kawasaki spin-
exchange kinetics. The Ising model has no intrinsic dynamics and phase separation in the
Ising model is usually mimicked via stochastic Kawasaki spin-exchange kinetics, which
allows for the interchange of spins on neighbouring sites. We do the same for the semi-
infinite Ising model and use the master equation approach to write down evolution equations
for the expectation value of the site spin variable or ‘magnetization’ [23–25]. Though
exact, these equations are not particularly useful as they are analytically and numerically
intractable. To proceed further, we invoke the mean-field approximation to obtain closed-
form equations for the evolution of the order parameter, i.e., the expectation value of the spin
variable. Finally, we coarse grain these equations to obtain the relevant partial differential
equation model. We do not wish to replicate this procedure here as it has already been
extensively discussed in the literature [23–25]. However, we do caution the reader that the
approximations involved are valid only close to the critical point whereas we typically use
these models to study phase-ordering dynamics far from criticality. Therefore, we would
like to interpret the master equation approach as a guide to good phenomenology rather
than as a derivation. Of course, as with all good phenomenology, the resultant model can
only be justified by its ability to replicate experimental results.

Having clarified the basis of the master equation approach to these problems, we present
the resultant dimensionless model for phase-separation kinetics in the presence of a surface
with a delta-function surface potential [25]. As expected, the bulk dynamics is described
by the usual CH equation, which is the deterministic version of equation (2). The surface
is mimicked by the boundary conditions

∂φ(R, 0, τ )

∂τ
= h1+ gφ(R, 0, τ )+ γ ∂φ(R, Z, τ)

∂Z

∣∣∣∣
Z=0

0= ∂

∂Z

[
φ(R, Z, τ)− φ(R, Z, τ)3+ 1

2
∇2φ(R, Z, τ)

]∣∣∣∣
Z=0

.

(22)

The first of these boundary conditions rapidly pins the surface value of the order parameter
to an equilibrium value dictated by the competition between the surface field and the energy
cost associated with a gradient in the order parameter. The second boundary condition is
simply the no-flux condition, which we had presented earlier also, and enforces conservation
of the order parameter. All variables have been rescaled into dimensionless units and the
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Figure 4. The phase diagram of our dimensionless model for surface-directed spinodal
decomposition, obtained by finding the solution of equations (25) and (26). The parameters
varied areh1/γ and g/γ ; and the states are labelled as wet (W), incompletely wet (IW), dry
(D), and incompletely dry (ID). The phase diagram is symmetric about the axish1/γ = 0.
For further details and equations of different lines, see Puri and Binder [25]. Subsequently, we
present results for the parameter valuesh1 = 8, g = −4 andγ = 4, marked by an× in the
phase diagram. (From reference [28].)

parameters in equation (22) are defined in terms of the unscaled parameters as follows:

h1 = 4H1√
3T

(
T

Tc

)3/2

(2q)3/2ξb
5

g = 8

[
(q − 2)

Js

J
− (q − 1)

]
ξb

4

γ = 4ξb
3.

(23)

In equation (23),Tc is the mean-field critical temperature, i.e.,Tc = qJ , whereq is the
coordination number of a site. Furthermore,ξb (=[2q(1− T/Tc)]−1/2) denotes the bulk
correlation length.

In view of the approximations made in obtaining our dynamical model, it is gratifying
that the same equations are derivable near criticality solely from symmetry principles, as
was demonstrated by Diehl and Janssen [37].

Before discussing the numerical solutions of this semi-infinite non-linear problem
or the analytic solutions of the linearized problem, we would like to relate the static
surface properties of semi-infinite mixtures to the equilibrium wetting phase diagram
and also discuss the general framework for characterization of surface-directed spinodal
decomposition.

The static properties of our model described by the CH equation with the boundary
conditions in equation (22) can be understood in terms of a free-energy functional [32,
34–36]:

βF =
∫

dR

[{ ∫ ∞
0

dZ

(
1

4
(∇φ)2− 1

2
φ2+ 1

4
φ4

)}
− 1

2

h1

γ
φ1− 1

4

g

γ
φ1

2

]
(24)
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whereφ1(R) ≡ φ(R, Z = 0) is the local order parameter at the surface, and we consider
the critical region whereT ' Tc.

The surface phase diagram that results from the free energy in equation (24) has been
discussed in previous work [27, 28]. Figure 4 shows the phase boundaries in the plane
of the variablesh1/γ andg/γ . These phase boundaries result from minimizing the free-
energy functional in equation (24), which yields the Euler–Lagrange equation (φ(R, Z) can
be taken as being independent ofR):

φ(Z)− φ(Z)3+ 1

2

d2φ(Z)

dZ2
= 0 (25)

with the boundary condition

h1

γ
+ g

γ
φ(0)+ dφ(Z)

dZ

∣∣∣∣
Z=0

= 0. (26)

Equations (25) and (26) are compatible with the static limit of (the deterministic version
of) equation (2) and equation (22), as would be expected. Note that, for unchanged inter-
actions at the surface (Js = J ), and near criticality (ξb → ∞), one hasg/γ = −2ξb →
−∞, h1/γ ∝ H1ξb

2 →∞, i.e., one is typically in the region where the surface is wet far
above the second-order wetting transition on the left-hand side of the phase diagram (for
h1 > 0). However, since in a typical experimental situation one is interested in spinodal
decomposition and wetting far from the bulk critical point, we shall use the present model
for parameter choices ofg, h1, γ of order unity as well.

The phenomenology in equilibrium discussed earlier readily provides the appropriate
theoretical framework for defining quantities which are needed to characterize surface
effects on spinodal decomposition. In the non-equilibrium case, one again considers equal-
time correlation functions and structure factors of the type defined in equations (18)–(21),
which are now time dependent since one considers quenching experiments far from thermal
equilibrium. Thus, the quantities that we wish to consider are the order parameter correlation
function

G‖(R1−R2, Z, τ) = 〈φ(R1, Z, τ)φ(R2, Z, τ)〉 − 〈φ(R1, Z, τ)〉〈φ(R2, Z, τ)〉 (27)

whereφ(R, Z, τ) is the continuum time-dependent order parameter in dimensionless units,
or its Fourier transform

S‖(k‖, Z, τ) =
∫

dR exp(ik‖ ·R)G‖(R, Z, τ). (28)

In equation (27), the angular brackets denote averages over both initial conditions and
thermal noise. We can also consider the more general correlation function

G(R1−R2, Z1, Z2, τ ) = 〈φ(R1, Z1, τ )φ(R2, Z2, τ )〉 − 〈φ(R1, Z1, τ )〉〈φ(R2, Z2, τ )〉
(29)

and its counterpart in Fourier space (accounting for the breaking of translational symmetry
by the wall)

S(k, Z, τ) =
∫

dR
∫ ∞

0
dZ′ exp(ik‖ ·R+ k⊥(Z′ − Z))G(R, Z′, Z, τ). (30)

In both equations (28) and (30), we have made use of the translational invariance in
the direction parallel to the surface. Note that, in our definition,G‖(R1 − R2, Z, τ) =
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Figure 5. Evolution pictures from an Euler-discretized version of our dynamical model
consisting of the CH equation in conjunction with the boundary conditions in equation (22). The
parameter values wereh1 = 8, g = −4 andγ = 4, corresponding to a wet static equilibrium,
marked by an× in the phase diagram of figure 4. Our two-dimensional results were obtained on
a lattice of sizeLX×LZ (LX = 400 andLZ = 300, in this case) with discretization mesh sizes
1τ = 0.03 and1X = 1.0. The surface with a delta-function potential is located atZ = 0 and is
mimicked by the boundary conditions in equation (22). Free boundary conditions are applied at
Z = LZ and periodic conditions are applied in theX-direction. The initial condition consists of
uniformly distributed random small-amplitude fluctuations about a zero background, mimicking
the disordered state before the quench. Evolution pictures are shown for the dimensionless times
τ = 30, 90, 900 and 9000.

G(R1 − R2, Z,Z, τ). In analogy with equation (21), the surface excess of the time-
dependent scattering intensity of the system is then

Ss(k, τ ) =
∫ ∞

0
dZ [S(k, Z, τ)− Sb(k, τ )] (31)

whereSb(k, τ ) is the scattering intensity observed in the bulk.
In studies of spinodal decomposition, one usually defines length scales from the decay

of the real-space correlation function or by taking reduced moments of the momentum-
space structure factor. We define the characteristic lengthL‖(Z, τ) describing the growth
of correlations in the parallel direction at a distanceZ from the surface as the distance over
which the appropriate real-space correlation function decays to half its maximum value.
Thus, in two-dimensional space,

G‖(L‖(Z, τ), Z, τ) = G‖(0, Z, τ)/2. (32)

This definition proved easy to implement in the context of our numerical calculations and
was thus used in all of our simulations. Of course, a perpendicular length scaleL⊥(Z, τ)
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Figure 6. Laterally averaged order parameter profilesφav(Z, τ) versusZ for the evolution
depicted in figure 5. These profiles are obtained as an average over 200 independent runs, with
the order parameter being further averaged in theX-direction for each separate run.

can be defined similarly. ForZ → ∞, these scalesL‖(Z, τ) andL⊥(Z, τ) should tend
smoothly towards the length scales that one uses to characterize spinodal decomposition in
the bulk, which we denote simply asLb(τ).

3.2.3. Numerical results for surface-directed spinodal decomposition.We have performed
extensive numerical simulations of our model consisting of the CH equation supplemented
by the boundary conditions in equation (22). These simulations were conducted using a
simple Euler discretization scheme on two-dimensional lattices of sizeLX×LZ [25, 29]. The
discretization mesh sizes for the results presented here are1τ = 0.03 and1x = 1.0, except
where stated otherwise. The surface was taken to be located atZ = 0 and this was modelled
using the boundary conditions in equation (22). Free boundary conditions were applied at
Z = LZ and periodic boundary conditions were applied in theX-direction. Details of our
simulation and extensive results are provided in references [25] and [29] and we will only
present representative results here. We should stress that our simulations are deterministic
and correspond to the low-noise limit. Our primary interest in these simulations was to
investigate the interplay between the wetting layer at the wall and spinodal decomposition
in the bulk. When the surface field is weak compared to the thermal noise, the surface is
only partially wetted and domains of both phases are in contact with the wall. We shall
discuss this situation in the next subsection.

Figure 5 shows typical evolution pictures for a set of parameter values (h1 = 8, g =
−4, γ = 4), where the surface is completely wetted by the preferred phase in equilibrium.
The corresponding point is marked by an× in the phase diagram of figure 4. The initial
condition for figure 5 is a uniformly disordered state corresponding to a high temperature. At
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Figure 7. (a) The position of the first zero of the laterally averaged order parameter profiles
R1(τ ) versusτ for the cases of a surface with a delta-function potential, and a long-ranged 1/Zn

potential withn = 1, 2 and 3 [29]. (b) A log–log plot of data for the cases with the long-ranged
potential in figure 7(a). The solid lines denote the best linear fits to the different data sets. The
best-fit exponents arex = 0.30, 0.21 and 0.16 forn = 1, 2 and 3, respectively. The error bars
for these exponent values are±0.01.
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Figure 8. Layer-dependent length scales in the direction parallel to the surfaceL‖(Z, τ) versus
τ for surface-directed spinodal decomposition with a delta-function surface potential. The
parameter values areh1 = 8, g = −4 and γ = 4, as in figure 5. These length scales are
defined as the distance over which the corresponding layerwise correlation function decays to
half its maximum value. The correlation function data is obtained on lattices of sizeLX × LZ
(LX = 300, LZ = 150) with discretization mesh sizes1τ = 0.05 and1X = 1.5, as an average
over 20 independent runs. We present data forZ = 6, 9, 12 and the bulk case, denoted by the
symbols indicated. The solid lines superposed on the data sets correspond to non-linear best fits
to the functional forma + bτa for τ > 1600 and the best-fit exponents (with error bars±0.02)
are indicated on the figure. (From reference [25].)

the dimensionless timeτ = 0, the system is quenched below the bulk critical temperature
and allowed to evolve deterministically. The surface forms a layer rich in the preferred
phase followed by a layer rich in the other phase, while the bulk shows the usual isotropic
spinodal decomposition. The enriched layers at the surface coarsen with time. Figure 6
shows laterally averaged order parameter profilesφav(Z, τ) as a function of the distance from
the surfaceZ and is the numerical equivalent of figures 1 and 2(a). The surface region
shows the damped oscillatory profile also seen in figures 1 and 2(a) and these surface-
directed waves propagate into the bulk with the passage of time. In the bulk, of course,
lateral averaging over randomly directed wave-vectors gives a near-zero value for the order
parameter.

One of the most interesting and experimentally relevant quantities is the time dependence
of the first zero of these laterally averaged profiles. Figure 7 plots the position of the first
zeroR1(τ ) versusτ for the case with a delta-function surface potential, which we have been
considering so far, and also for cases with a long-ranged surface potentialV (Z) ∼ 1/Zn

with n = 1, 2 and 3 [29]. Of course, at the surface we have to flatten out the potential
and we choose a situation in which the surface field is alsoh1 = 8 [29]. Figure 7(a) is
a direct plot ofR1(τ ) versusτ for the delta-function case and the long-ranged cases with
n = 1, 2, 3, and figure 7(b) is a log–log plot of the data forn = 1, 2, 3. The growth of
the surface layer is very slow in the delta-function case and is possibly logarithmic, though
we do not have sufficiently extended data to conclusively confirm this. The data for the
long-ranged cases appear to obey a reasonable power law over the time-scales considered,
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Figure 9. The time dependence of layerwise length scales in the direction perpendicular to the
surface, denoted byL⊥(Z, τ). Data sets correspond to the same values ofZ as in figure 8;
and the superposed solid lines denote non-linear best fits to the functional forma + bτa for
τ > 1600. The corresponding best-fit exponents are marked on the figure and are consistent
with Lifshitz–Slyozov growth except in the immediate vicinity of the surface atZ = 6. (From
reference [25].)

but the best-fit exponent (denoted byx in figure 7(b)) depends on the nature of the potential.
These results should be contrasted with those for the limit of low field and high noise, where
the surface layer thickness always exhibits a LS growth law.

The extremely slow growth of the wetting layer in the case with a delta-function
potential has an important implication for surface-directed spinodal decomposition, namely,
the dynamics of the wetting layer does not actively interfere with the dynamics of phase
separation. However, the presence of a wetting layer at the surface provides a preferred
direction of alignment for domains near the surface. Thus, growth parallel to the surface is
faster nearer the surface than in the bulk. This is shown in figure 8, where we plotL‖(Z, τ)
versusτ for different values ofZ. However, the data forL‖(Z, τ) are always consistent
with the LS growth lawL‖(τ ) = a + bτ 1/3 and the enhanced growth near the surface is
a result of larger coefficientsa and b rather than a different growth exponent. Figure 9
shows the time dependence of theZ-dependent length scale perpendicular to the surface,
denoted byL⊥(Z, τ). Apart from the data forZ = 6, other growth exponents again appear
to be consistent with the LS growth law. We interpret the small effective exponent near
the surface as a weighted average of the growth exponent of the wetting layer and the LS
exponentφ = 1/3 which applies in the bulk. This picture appears to be consistent with
the recent experiments by Geogheganet al [13], which we had mentioned in the previous
section.

We have also investigated the experimentally relevant problem of spinodal
decomposition in a thin-film geometry [38]. The walls of the thin film are mimicked by
two sets of boundary conditions of the type in equation (22). For details of our simulation
and results, we refer the interested reader to reference [38].
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3.3. Other relevant studies

In this subsection, we would like to discuss a number of other important studies of this
problem. Brown and Chakrabarti [9] presented results from a two-dimensional simulation
of surface-directed spinodal decomposition with both short-ranged and long-ranged surface
fields. They modelled ‘bulk’ phase separation by the CHC equation with a surface potential
term. The surface was mimicked by two boundary conditions—one fixing the order
parameter at the surface to its value in the preferred phase, and the other one corresponding
to the usual no-flux condition. The parameter values used by these authors correspond
to the low-field–high-noise regime. Brown and Chakrabarti found that the thickness of
the enriched surface layer in their simulation obeys the LS growth lawR1(τ ) ∼ τ 1/3.
Furthermore, they showed that length scales perpendicular and parallel to the surface are
also consistent with a LS growth law, but the typical domain sizes parallel to the surface
are larger than those perpendicular to the surface—in conformity with our results from the
previous section. Finally, Brown and Chakrabarti found that the time-dependent surface-
directed wave profiles had a simple scaling form, namely,φav(Z, τ) = 8(Z/R1(τ )). This
should be contrasted with the high-field–low-noise limit, where the morphology of the
laterally averaged profiles also evolves in time and the simple scalingansatzproposed
above does not apply. Bhattacharyaet al [39] have used a similar model to study spinodal
decomposition in a strip geometry. Recently, Brownet al [40] have also reported an
interesting study of ‘surface-induced nucleation’, where they consider a metastable binary
mixture in contact with a surface which can nucleate droplets of the preferred phase with
much greater facility than in the bulk. In this situation, they find that the thickness of the
‘wetting layer’ exhibits a crossover from the LS growth law (R1(τ ) ∼ τ 1/3) to a slower
growth law (R1(τ ) ∼ τ 1/6). We believe that a more detailed experimental and numerical
investigation of the nucleation regime would be of considerable interest.

Brown and Chakrabarti have also used similar models to investigate surface-directed
spinodal decomposition in block copolymer melts in both semi-infinite and strip geometries
[41]. Following Oono and Shiwa [42], they modelled the block copolymer system via
the usualφ4-free-energy functional in conjunction with a long-ranged interaction term.
The boundary conditions, which mimicked the surface, were the same as in their previous
study. As expected, the additional long-ranged interaction term in the free-energy functional
drastically modifies the bulk and surface dynamics of the phase-separating system. For
details of this study, we refer the interested reader to reference [41].

A comprehensive cell dynamical system (CDS) study of this problem was reported by
Marko [10]. He also considered surface-directed spinodal decomposition with both short-
ranged and long-ranged surface forces. In our perception, Marko’s study is one of the most
thorough investigations of this problem. He considered both two- and three-dimensional
systems, and also studied both the low-surface-field–high-noise and high-surface-field–low-
noise limits. Marko carefully clarified the morphologies of domain growth and the laterally
averaged profiles in both limits, though his primary focus was the limit in which the surface
is only partially wet. In this limit, he found results consistent with those of Brown and
Chakrabarti [9] for the growth of wetting layers. On the other hand, in the low-noise
limit, he found a drastic slowing down of the growth of the wetting layer into the bulk,
in conformity with our results. However, he did not attempt to quantify the nature of
domain growth laws in the low-noise limit. Marko also presented an analysis of the effect
of hydrodynamic flows on surface structure in the asymptotic time regime.

Another important study is due to Maet al [43], who approached this problem via two
different simulations. The first of these was a molecular dynamics (MD) study of a binary
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Lennard-Jones fluid mixture phase separating in the presence of a wall. Their MD study
showed surface-directed spinodal decomposition waves analogous to the study of Jones
et al [6], and the numerical results that we have shown earlier. Maet al defined length
scales through moments of the time-dependent structure factor of the composition profiles.
However, they were unable to make clear quantitative statements about the behaviour of
these characteristic length scales. The second simulation reported by Maet al [43] was a
study of a system of Langevin equations for soft-spin variables on a discrete spatial lattice.
Again, they observed waves of surface-directed spinodal decomposition, as in their MD
study. The domain growth in this case appears to be somewhat slower than in their MD
study but the difference needs to be quantified more clearly.

Finally, we mention a MC study by Saguiet al [44], who investigated surface-directed
phase separation in three dimensions. These authors considered an Ising model with a short-
ranged surface field and Kawasaki spin-exchange kinetics. They studied situations with both
zero and non-zero surface fields. In the absence of a surface field, phase separation can
occur in the surface layer by an appropriate adjustment of the interactions in the surface and
bulk layers, even if the bulk is stable. For the case of a stable bulk and unstable surface,
Saguiet al reported that the lateral domain growth in the surface layer was consistent with
the LCA growth law, namely,L‖(τ ) = a+ bτ 1/2, which characterizes bulk domain growth
in the case with non-conserved order parameter. For the case where both the bulk and
surface are unstable, Saguiet al found that the growth exponent in the surface layer ranged
from φ = 1/2 to φ = 1/3, depending on the depth of the quench—with a lower growth
exponent for deeper quenches. Nevertheless, in both cases above, Saguiet al found that the
scaled structure factor in the surface layer is consistent with the Ohta–Jasnow–Kawasaki
form [45], which characterizes domain growth in the non-conserved case. Saguiet al also
considered the case with non-zero surface field, where they observed similar behaviour.
Their results should be contrasted with the numerical and experimental results cited earlier,
which found that the lateral length scale in the surface layer also obeys the LS growth law.

3.4. Analytical approaches to early-time (linear) behaviour

The non-linear model discussed in subsection 3.2 (i.e., the CH equation in conjunction
with the boundary conditions in equation (22)) is clearly not amenable to analytic solution,
except in the static limit. However, one can solve the linearized version of this model
and thereby obtain useful information in certain relevant limits. In the bulk, solution of
the linearized model is rather trivial. In the present case, however, one has to account for
the two boundary conditions at the surface and this makes the problem considerably more
difficult.

Binder and Frisch [24] first solved the linearized problem for the case of a stable bulk
(T > Tc). They studied the approach to equilibrium of a homogeneous initial condition and
showed that the resultant concentration profile has a transient minimum whose distance from
the wall grows asτ 1/2. Qualitatively, these concentration profiles strongly resemble those
reported by Jones and Kramer [46] in their experimental studies of surface enrichment in
binary polymer mixtures. At later times, the concentration profile obtained from the linear
theory exhibits an essentially exponential decay with the equilibrium correlation length. For
long times, the order parameter profile can be approximated as the sum of two exponentially
decaying terms. One of the relaxation times, related to the equilibrium correlation length,
is effectively constant and the other one, reflecting the diffusive behaviour, is proportional
to τ 1/2. This results in a diffusive behaviour of the spatial moments, in which thenth
moment of the profile diverges asτn/2. These results were confirmed numerically by Puri
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and Frisch [47], who also demonstrated that the broad features of the surface-enrichment
profile exhibited a diffusive behaviour even for strong surface fields, where the linearized
theory was not valid.

Frisch et al [48] also examined surface-directed spinodal decomposition in the
framework of a linearized theory. They found that the initial-stage behaviour already
replicated reasonably well the damped concentration profiles seen in figures 1 and 6.
Furthermore, the predicted wavelength of the concentration oscillations was also compatible
with numerical results obtained from the fully non-linear model [25].

4. Summary and discussion

We would like to end this article with a brief summary and discussion of the material
presented in this paper. We have attempted to provide a critical overview of the modelling
and simulation of surface-directed spinodal decomposition. To motivate the theoretical
modelling, we have also provided a brief perspective of experimental results which must be
captured by any reasonable model. (For further details of the experimental techniques and
results in this area, we refer the interested reader to reference [5].) We do not claim that
the present article constitutes an exhaustive review of the theoretical and numerical work
in this field. Rather, we have extensively discussed our own contributions to this problem
and have highlighted many other important works in the context of our own work.

Before we proceed, it is worthwhile contrasting different levels of modelling of this
problem. The simplest level of modelling is the microscopic level, i.e., that via Monte
Carlo (MC) or molecular dynamics (MD) simulations of a semi-infinite Ising model with
Kawasaki spin-exchange kinetics [21, 43, 44]. Unfortunately, because of their inherent
limitations, MC simulations have not had much success in accessing the late stages of
spinodal decomposition in the bulk. Thus, it is reasonable to assume that the more
complicated problem of surface-directed spinodal decomposition will prove even harder
to investigate using MC simulations. On the other hand, coarse-grained models have been
very successful in investigating the asymptotic behaviour of bulk spinodal decomposition
[49] and this appears to be a reasonable approach to the study of surface-directed spinodal
decomposition also.

Successful phenomenological models of surface-directed spinodal decomposition
typically consist of a bulk equation which describes phase separation, namely, the CHC
equation, in conjunction with two boundary conditions which model the wall. (One can
also model spinodal decomposition in a thin-film geometry by applying a pair of appropriate
boundary conditions at each wall of the film.) If the surface exerts a long-ranged force on
the preferred component, the bulk CHC equation must explicitly incorporate this term. In
the case of a delta-function potential at the surface, the surface field is only manifested in
the boundary conditions. The first of the two boundary conditions rapidly pins the order
parameter at the surface to its equilibrium value, dictated by the competition between the
surface field and the order parameter gradient. The second boundary condition is the no-flux
condition, which enforces conservation of the order parameter.

We have obtained a phenomenological model by applying the master equation approach
to the appropriate microscopic model [24, 25]. Other authors [19, 7, 9, 10] have obtained
similar models by the more heuristic method of incorporating suitable surface energy
terms into the Ginzburg–Landau free energy. We believe that all these models are in
the same dynamical universality class, except those of references [19] and [7], of course.
Nevertheless, we feel that the master equation approach that we use has certain advantages
over the heuristic method. The first advantage is that it provides a somewhat mechanistic
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(and therefore infallible!) method for obtaining a reasonable phenomenological model from
an appropriate microscopic model, which is usually easy to formulate. The second advantage
is that the incorporation of microscopic detail provides a more accurate modelling of the
range of static solutions for the model.

The non-linear phenomenological models thus obtained can only be solved numerically.
There are two distinct limits which are of interest. The first possibility is that of strong
thermal noise and weak surface field [9, 10]. In this case, domains of both phases are in
contact with the surface, so it is only partially wet. In this situation, a strong universality
applies in that both the first zero of the laterally averaged order parameter profiles and the
lateral domain size obey the Lifshitz–Slyozov growth law. The experiments of references
[8, 11] are in accordance with these numerical results. We have studied the opposite limit
of strong surface field and no noise as we were primarily interested in the interplay of
wetting and spinodal decomposition. In this limit, the surface is completely covered by a
layer of the preferred phase and the growth of this layer is governed by the nature of the
interaction exerted by the surface on the system. In the case of a delta-function potential at
the surface, the wetting layer grows extremely slowly (possibly logarithmically) and does
not actively interfere with spinodal decomposition in the bulk. However, the multilayered
structure at the surface provides a preferred orientation for domains in the vicinity of the
surface. Thus, the growth parallel to the surface is faster than that perpendicular to the
surface, though growth laws in both directions appear to the compatible with the LS growth
law. We have also studied the functional form of the layer-dependent correlation function
parallel to the surface and refer the interested reader to reference [25]. Furthermore, we
have also numerically investigated the case with long-ranged surface fields and will present
detailed results in reference [29]. The experiments of Geogheganet al [13] appear to realize
the high-surface-field–low-noise limit, as do experiments on binary fluids in contact with a
surface.

There are a number of important problems which still need to be addressed in this field.
For example, there does not appear to be any comprehensive study of off-critical binary
mixtures phase separating near a surface, though there has been a preliminary study of
surface-induced nucleation [40]. In the absence of hydrodynamic effects, this study should
be easy to perform in the framework of the present model. It would also be of great
experimental relevance to systematically examine the effects of increasing off-criticality
on the morphology of surface-directed spinodal decomposition. An even more important
outstanding problem is the incorporation of hydrodynamic effects into the modelling and
simulations of this problem. Binary fluids in contact with surfaces are of great experimental
and technological relevance [14, 17, 18]. Hydrodynamic effects play a crucial role in the
late stages of phase separation in binary fluids [3, 4] and drastically alter the asymptotic
domain growth law. A reasonable phenomenological model of phase-separating binary
fluids is the so-called model H, which couples dynamical equations for the order parameter
and fluid velocity fields [26]. An appropriate phenomenological model for binary fluids
phase separating near a surface would consist of model H in the bulk, in conjunction
with boundary conditions on both the order parameter and velocity fields. The boundary
conditions in equation (22) should be reasonable for binary fluids also, as the fluid velocity
is zero at the surface. The obvious boundary condition for the velocity field is to set it to
zero at the wall. Though the model is reasonably easy to set up, simulations will be rather
demanding because of the large system sizes needed to model hydrodynamic systems so
as to avoid finite-size effects [4]. However, these should certainly be within the scope of
present-day computing facilities.
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